首页> 外文OA文献 >Safety Verification and Control for Collision Avoidance at Road Intersections
【2h】

Safety Verification and Control for Collision Avoidance at Road Intersections

机译:道路避碰安全验证与控制   交叉口

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the design of a supervisory algorithm that monitorssafety at road intersections and overrides drivers with a safe input whennecessary. The design of the supervisor consists of two parts: safetyverification and control design. Safety verification is the problem todetermine if vehicles will be able to cross the intersection without collidingwith current drivers' inputs. We translate this safety verification probleminto a jobshop scheduling problem, which minimizes the maximum lateness andevaluates if the optimal cost is zero. The zero optimal cost corresponds to thecase in which all vehicles can cross each conflict area without collisions.Computing the optimal cost requires solving a Mixed Integer NonlinearProgramming (MINLP) problem due to the nonlinear second-order dynamics of thevehicles. We therefore estimate this optimal cost by formulating two relatedMixed Integer Linear Programming (MILP) problems that assume simpler vehicledynamics. We prove that these two MILP problems yield lower and upper bounds ofthe optimal cost. We also quantify the worst case approximation errors of theseMILP problems. We design the supervisor to override the vehicles with a safecontrol input if the MILP problem that computes the upper bound yields apositive optimal cost. We theoretically demonstrate that the supervisor keepsthe intersection safe and is non-blocking. Computer simulations furthervalidate that the algorithms can run in real time for problems of realisticsize.
机译:本文提出了一种监控算法的设计,该算法可监控道路交叉口的安全性,并在必要时以安全输入覆盖驾驶员。主管的设计包括两部分:安全验证和控制设计。安全验证是确定车辆是否能够在不与当前驾驶员输入冲突的情况下通过交叉路口的问题。我们将此安全验证问题转换为车间调度问题,该问题可最大程度地减少最大延迟并评估最佳成本是否为零。最优成本为零对应于所有车辆都可以穿越每个冲突区域而不会发生碰撞的情况。计算最优成本需要解决车辆的非线性二阶动力学问题,从而解决混合整数非线性规划(MINLP)问题。因此,我们通过制定两个相关的混合整数线性规划(MILP)问题(假设车辆动力学更简单)来估算此最佳成本。我们证明这两个MILP问题产生了最优成本的上下限。我们还量化了这些MILP问题的最坏情况下的近似误差。如果计算上限的MILP问题产生肯定的最优成本,我们设计主管将使用安全控制输入来覆盖车辆。从理论上讲,我们证明了监督者可以确保路口安全并且畅通无阻。计算机仿真进一步验证了算法可以针对实际大小的问题实时运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号